Source code for oumi.utils.verl_model_merger

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Copied from the Verl script:
# volcengine/verl/scripts/model_merger.py
# with minor modifications e.g., `import verl` is wrapped into try-except block
# and some verl-related imports are moved down to the function that uses them.

"""This script is used to merge huggingface model and test verl checkpoints from FSDP and Megatron backends.

To merge FSDP checkpoints:
```sh
python scripts/model_merger.py merge \
    --backend fsdp \
    --local_dir checkpoints/verl_fsdp_gsm8k_examples/qwen2_5_0b5_fsdp_saveload/global_step_1/actor \
    --target_dir /path/to/merged_hf_model
```

To merge Megatron checkpoints:
```sh
python scripts/model_merger.py merge \
    --backend megatron \
    --tie-word-embedding \
    --local_dir checkpoints/verl_megatron_gsm8k_examples/qwen2_5_0b5_megatron_saveload/global_step_1/actor \
    --target_dir /path/to/merged_hf_model
```

For more details, please refer to documentation:
https://verl.readthedocs.io/en/latest/advance/checkpoint.html#convert-fsdp-and-megatron-checkpoints-to-huggingface-format-model
"""

import argparse
import os
import re
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional

import numpy as np
import torch
from accelerate import init_empty_weights
from safetensors.torch import load_file
from torch.distributed._tensor import Placement, Shard
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoModelForTokenClassification,
    AutoModelForVision2Seq,
    GenerationConfig,
    PretrainedConfig,
)

try:
    # for torch 2.5+
    from torch.distributed.tensor import DTensor
except ImportError:
    from torch.distributed._tensor import DTensor

from tqdm import tqdm

try:
    import verl  # pyright: ignore[reportMissingImports]
except ModuleNotFoundError:
    verl = None


[docs] @dataclass class ModelMergerConfig: operation: str # 'merge' or 'test' backend: str local_dir: str hf_model_config_path: str target_dir: Optional[str] = "tmp" hf_upload_path: Optional[str] = None private: bool = False test_hf_dir: Optional[str] = None tie_word_embedding: bool = False is_value_model: bool = False hf_model_path: Optional[str] = None hf_upload: bool = field(init=False) def __post_init__(self): self.hf_upload = self.operation == "merge" and bool(self.hf_upload_path) if self.operation == "test": self.target_dir = None self.hf_upload_path = None self.private = False
[docs] class BaseModelMerger(ABC): def __init__(self, config: ModelMergerConfig): self.config = config self.hf_model_config_path = config.hf_model_config_path if config.hf_model_path: print( "Warning: --hf_model_path is deprecated and will be removed in a future version. Currently verl will save huggingface model configuration files into checkpoint directories. Therefore, there is no need to provide --hf_model_path. " ) self.hf_model_config_path = config.hf_model_path self.model_config = AutoConfig.from_pretrained(self.hf_model_config_path)
[docs] def get_transformers_auto_model_class(self): if "ForTokenClassification" in self.model_config.architectures[0]: return AutoModelForTokenClassification elif "ForCausalLM" in self.model_config.architectures[0]: return AutoModelForCausalLM elif "ForConditionalGeneration" in self.model_config.architectures[0]: return AutoModelForVision2Seq raise NotImplementedError( f"Unknown architecture {self.model_config.architectures}" )
[docs] def patch_model_generation_config(self, model): """The generation_config created from model config may be different to the pretrained model, this may lead to error when generating: https://github.com/volcengine/verl/issues/1246 This function patch the generation_config created from model config to the pretrained model. """ if model.can_generate(): try: model.generation_config = GenerationConfig.from_pretrained( self.hf_model_config_path ) except OSError: print( f"Warning: Generation config file not found in {self.hf_model_config_path}, using a generation config created from the model config." ) return model
[docs] def save_hf_model_and_tokenizer(self, state_dict: dict[str, torch.Tensor]): if verl is None: raise RuntimeError( "verl is not installed. " "Please install it with 'pip install `oumi[gpu]`'." ) from verl.utils import hf_processor, hf_tokenizer auto_model_class = self.get_transformers_auto_model_class() with init_empty_weights(): model = auto_model_class.from_config( self.model_config, torch_dtype=torch.bfloat16 ) model.to_empty(device="cpu") model = self.patch_model_generation_config(model) print(f"Saving model to {self.config.target_dir}") model.save_pretrained(self.config.target_dir, state_dict=state_dict) del state_dict del model processor = hf_processor(self.hf_model_config_path) tokenizer = hf_tokenizer(self.hf_model_config_path) if processor is not None: print(f"Saving processor to {self.config.target_dir}") processor.save_pretrained(self.config.target_dir) if tokenizer is not None: print(f"Saving tokenizer to {self.config.target_dir}") tokenizer.save_pretrained(self.config.target_dir)
[docs] def upload_to_huggingface(self): from huggingface_hub import HfApi api = HfApi() api.create_repo( repo_id=self.config.hf_upload_path, # pyright: ignore[reportArgumentType] private=self.config.private, exist_ok=True, ) api.upload_folder( folder_path=self.config.target_dir, repo_id=self.config.hf_upload_path, repo_type="model", )
[docs] @abstractmethod def merge_and_save(self): raise NotImplementedError("Subclasses should implement this method")
[docs] class FSDPModelMerger(BaseModelMerger): def _get_world_size(self) -> int: """Extracts the FSDP world_size from checkpoint filenames (e.g., 'model_world_size_8_rank_0.pt').""" for filename in os.listdir(self.config.local_dir): match = re.match(r"model_world_size_(\d+)_rank_0\.pt", filename) if match: return int(match.group(1)) raise FileNotFoundError( rf"Could not determine world size. No file matching 'model_world_size_(\d+)_rank_0.pt' found in {self.config.local_dir}" ) def _load_rank_zero_state_dict(self, world_size: int) -> dict: return torch.load( Path(self.config.local_dir) / f"model_world_size_{world_size}_rank_0.pt", map_location="cpu", weights_only=False, ) def _extract_device_mesh_info( self, state_dict: dict, world_size: int ) -> tuple[np.ndarray, tuple[str, ...]]: """Retrieves sharding information (device_mesh, mesh_dim_names) from a DTensor in the state_dict. If no DTensor is found, infers a simple FSDP mesh based on world_size. """ pivot_key = sorted(list(state_dict.keys()))[0] weight = state_dict[pivot_key] if isinstance(weight, DTensor): # get sharding info device_mesh = weight.device_mesh mesh = device_mesh.mesh mesh_dim_names = device_mesh.mesh_dim_names else: # for non-DTensor mesh = np.array([world_size], dtype=np.int64) mesh_dim_names = ("fsdp",) return mesh, mesh_dim_names def _calculate_shard_configuration( self, mesh: np.ndarray, mesh_dim_names: tuple[str, ...] ) -> tuple[int, tuple[int, ...]]: """Calculates the total number of shards and the shape of the device mesh.""" assert mesh_dim_names in ( ("fsdp",), ("ddp", "fsdp"), ), f"Unsupported mesh_dim_names {mesh_dim_names}" if "tp" in mesh_dim_names: # TODO: "tp" is not supported yet due to the above assert total_shards = mesh.shape[-1] * mesh.shape[-2] mesh_shape = (mesh.shape[-2], mesh.shape[-1]) else: total_shards = mesh.shape[-1] mesh_shape = (mesh.shape[-1],) return total_shards, mesh_shape def _merge_by_placement( self, tensors: list[torch.Tensor], placement: Placement ) -> torch.Tensor: """Merges a list of tensors based on their DTensor placement""" if placement.is_replicate(): return tensors[0] elif placement.is_partial(): raise NotImplementedError("Partial placement is not supported yet") elif placement.is_shard(): return torch.cat(tensors, dim=placement.dim).contiguous() raise NotImplementedError(f"Unsupported placement: {placement}") def _load_and_merge_state_dicts( self, world_size: int, total_shards: int, mesh_shape: tuple[int, ...], mesh_dim_names: tuple[str, ...], ) -> dict[str, torch.Tensor]: model_state_dict_lst = [None] * total_shards def process_one_shard(rank: int, model_state_dict_lst: list): model_path = ( Path(self.config.local_dir) / f"model_world_size_{world_size}_rank_{rank}.pt" ) state_dict = torch.load(model_path, map_location="cpu", weights_only=False) model_state_dict_lst[rank] = state_dict return state_dict with ThreadPoolExecutor(max_workers=min(32, os.cpu_count())) as executor: futures = [ executor.submit(process_one_shard, rank, model_state_dict_lst) for rank in range(total_shards) ] for future in tqdm( futures, desc=f"Loading {total_shards} FSDP shards", total=total_shards ): future.result() # Merge state dicts from all shards state_dict = {} param_placements: dict[str, list] = {} for key in set(model_state_dict_lst[0].keys()): state_dict[key] = [] for model_state_shard in model_state_dict_lst: # add tensor shard in order of rank to state_dict[key] tensor = model_state_shard.pop(key) if isinstance(tensor, DTensor): state_dict[key].append(tensor._local_tensor.bfloat16()) placements = tuple(tensor.placements) # replicated placement at dp dimension can be discarded if mesh_dim_names[0] in ("dp", "ddp"): placements = placements[1:] if key not in param_placements: param_placements[key] = placements else: assert param_placements[key] == placements else: state_dict[key].append(tensor.bfloat16()) del model_state_dict_lst # Merge tensors for key in sorted(state_dict): if not isinstance(state_dict[key], list): print(f"No need to merge key {key}") continue if key in param_placements: # merge shards placements: tuple[Shard] = param_placements[key] if len(mesh_shape) == 1: # 1-D list, FSDP without TP assert len(placements) == 1 shards = state_dict[key] state_dict[key] = self._merge_by_placement(shards, placements[0]) else: # 2-D list, FSDP + TP raise NotImplementedError("FSDP + TP is not supported yet") else: state_dict[key] = torch.cat(state_dict[key], dim=0) return state_dict
[docs] def merge_and_save(self): world_size = self._get_world_size() rank_zero_state_dict = self._load_rank_zero_state_dict(world_size) mesh, mesh_dim_names = self._extract_device_mesh_info( rank_zero_state_dict, world_size ) print(f"Got device mesh {mesh}, mesh_dim_names {mesh_dim_names}") total_shards, mesh_shape = self._calculate_shard_configuration( mesh, mesh_dim_names ) print(f"Processing model shards with {total_shards} {mesh_shape} in total") merged_state_dict = self._load_and_merge_state_dicts( world_size, total_shards, mesh_shape, mesh_dim_names ) if self.config.operation == "test": if not self.config.test_hf_dir: raise ValueError("test_hf_dir must be provided for test operation") self._test_state_dict(merged_state_dict) elif self.config.operation == "merge": self.save_hf_model_and_tokenizer(merged_state_dict) if self.config.hf_upload: self.upload_to_huggingface() else: raise ValueError(f"Unknown operation: {self.config.operation}")
def _test_state_dict(self, state_dict: dict[str, torch.Tensor]): auto_model_class = self.get_transformers_auto_model_class() hf_model = auto_model_class.from_pretrained( self.config.test_hf_dir, torch_dtype=torch.bfloat16 ) hf_state_dict = hf_model.state_dict() del hf_model hf_model_keys = set(hf_state_dict.keys()) collected_keys = set(state_dict.keys()) missing_keys = hf_model_keys - collected_keys assert len(missing_keys) == 0, ( f"Missing keys in collected state dict: {list(sorted(missing_keys))}" ) extra_keys = collected_keys - hf_model_keys assert len(extra_keys) == 0, ( f"Extra keys in collected state dict: {list(sorted(extra_keys))}" ) for key in hf_model_keys: hf_shape = hf_state_dict[key].shape collected_shape = state_dict[key].shape assert hf_shape == collected_shape, ( f"Shape mismatch for key '{key}': original {hf_shape} vs collected {collected_shape}" ) hf_dtype = hf_state_dict[key].dtype collected_dtype = state_dict[key].dtype assert hf_dtype == collected_dtype, ( f"Dtype mismatch for key '{key}': original {hf_dtype} vs collected {collected_dtype}" ) torch.testing.assert_close( hf_state_dict[key], state_dict[key], atol=1e-6, rtol=1e-6 ) print( "FSDP checks passed: The merged state_dict matches the hf model saved by FSDPCheckpointManager." )
[docs] class MegatronModelMerger(BaseModelMerger): def __init__(self, config: ModelMergerConfig): from verl.utils.megatron_utils import ( get_hf_config_and_tokenizer_checkpoint_path, ) config.hf_model_config_path = get_hf_config_and_tokenizer_checkpoint_path( config.local_dir ) super().__init__(config) def _get_tp_pp_rank_from_sharded_dir(self, sharded_dir: str) -> tuple[int, int]: match = re.match(r"mp_rank_(\d\d)_(\d\d\d)", sharded_dir) assert match, f"Invalid sharded dir {sharded_dir}" tp_rank = int(match.group(1)) pp_rank = int(match.group(2)) return tp_rank, pp_rank def _check_megatron_checkpoint_path( self, model_path: str ) -> tuple[list[str], int, int]: """Validates the Megatron checkpoint structure (presence of 'model.pt' in sharded directories). Determines TP and PP sizes from directory names. """ tp_size = 0 pp_size = 0 sharded_dirs = sorted(os.listdir(model_path)) for sharded_dir in sharded_dirs: assert "model.pt" in os.listdir(Path(model_path) / sharded_dir), ( f"model.pt not found in {sharded_dir}" ) tp_rank, pp_rank = self._get_tp_pp_rank_from_sharded_dir(sharded_dir) tp_size = max(tp_size, tp_rank + 1) pp_size = max(pp_size, pp_rank + 1) return sharded_dirs, tp_size, pp_size def _merge_across_tp( self, key: str, tp_data: list[torch.Tensor], config: PretrainedConfig, tp_size: int, is_value_model: bool = False, ) -> torch.Tensor | list[torch.Tensor]: if "linear_fc1.weight" in key: # if the tensor is gate and proj gate_lst = [] up_lst = [] for infer_param in tp_data: gate, up = infer_param.chunk(2) gate_lst.append(gate) up_lst.append(up) gate = torch.cat(gate_lst, dim=0) up = torch.cat(up_lst, dim=0) return [gate, up] elif "self_attention.linear_qkv." in key and "layer_norm" not in key: # if the tensor is qkv, for each param on tp, split into q, k, v # concat q, k, v separately. q_lst = [] k_lst = [] v_lst = [] assert config.num_attention_heads % config.num_key_value_heads == 0 num_q_per_kv = config.num_attention_heads // config.num_key_value_heads assert tp_data[0].shape[0] % (num_q_per_kv + 2) == 0 kv_size_per_tp = tp_data[0].shape[0] // (num_q_per_kv + 2) split_size = [kv_size_per_tp * num_q_per_kv, kv_size_per_tp, kv_size_per_tp] for infer_param in tp_data: num_query_groups_per_partition = config.num_key_value_heads // tp_size for chunk in infer_param.chunk(num_query_groups_per_partition): split_size = [ kv_size_per_tp * num_q_per_kv // num_query_groups_per_partition, kv_size_per_tp // num_query_groups_per_partition, kv_size_per_tp // num_query_groups_per_partition, ] q, k, v = chunk.split(split_size) q_lst.append(q) k_lst.append(k) v_lst.append(v) q = torch.cat(q_lst, dim=0) k = torch.cat(k_lst, dim=0) v = torch.cat(v_lst, dim=0) return [q, k, v] elif ( "layer_norm" in key or "layernorm" in key or "output_layer" in key and is_value_model ): return tp_data[0] else: dim = 0 if "linear_fc2.weight" in key or "self_attention.linear_proj" in key: dim = 1 return torch.cat(tp_data, dim=dim) def _load_state_dicts( self, model_ckpt_path: str, sharded_dirs: list[str], tp_size: int, pp_size: int ) -> list[list[dict]]: model_state_dict_lst = [[None for _ in range(tp_size)] for _ in range(pp_size)] def _process_one_megatron_shard(sharded_dir: str): model_file_path = Path(model_ckpt_path) / sharded_dir / "model.pt" state_dict = torch.load( model_file_path, map_location="cpu", weights_only=False ) tp_rank, pp_rank = self._get_tp_pp_rank_from_sharded_dir(sharded_dir) model_state_dict_lst[pp_rank][tp_rank] = state_dict with ThreadPoolExecutor(max_workers=min(32, os.cpu_count())) as executor: futures = [ executor.submit(_process_one_megatron_shard, sharded_dir) for sharded_dir in sharded_dirs ] for future in tqdm( futures, desc=f"Loading {len(sharded_dirs)} Megatron shards", total=len(sharded_dirs), ): future.result() return model_state_dict_lst def _merge_state_dicts( self, model_state_dict_lst: list[list[dict]], tp_size: int, pp_size: int ) -> dict[str, torch.Tensor]: state_dict = {} vpp_size = len(model_state_dict_lst[0][0]) layers_cum = 0 for vpp_rank in range(vpp_size): for pp_rank in range(pp_size): layers_handled = 0 keys = model_state_dict_lst[pp_rank][0][vpp_rank].keys() for key in keys: if "extra_state" in key: continue if self.config.tie_word_embedding and ("output_layer" in key): print( "skip lm_head and reward_head loading because of tie_word_embeddings" ) continue new_key = key if "decoder.layers." in key: local_layer_no = int(key.split(".")[2]) layers_handled = max(local_layer_no, layers_handled) global_layer_no = local_layer_no + layers_cum new_key_list = key.split(".") new_key_list[2] = str(global_layer_no) new_key = ".".join(new_key_list) tp_data = [ model_state_dict_lst[pp_rank][tp_rank][vpp_rank][key] for tp_rank in range(tp_size) ] merged = self._merge_across_tp( new_key, tp_data, self.model_config, tp_size, self.config.is_value_model, ) if not isinstance(merged, list): state_dict[new_key] = merged elif len(merged) == 3: # split qkv for n, d in zip(["q", "k", "v"], merged): state_dict[new_key.replace("linear_qkv", f"linear_{n}")] = d elif len(merged) == 2: # split gate up state_dict[new_key.replace("linear_fc1", "gate_proj")] = merged[ 0 ] state_dict[new_key.replace("linear_fc1", "up_proj")] = merged[1] layers_cum += layers_handled + 1 # zero based return state_dict
[docs] def merge_and_save(self): from verl.utils.megatron_utils import get_model_checkpoint_path model_ckpt_path = get_model_checkpoint_path(self.config.local_dir) sharded_dirs, tp_size, pp_size = self._check_megatron_checkpoint_path( model_ckpt_path ) print( f"sharded_dirs: {sharded_dirs}, tp_size: {tp_size}, pp_size: {pp_size}, mp_size: {len(sharded_dirs)}" ) model_state_dict_lst = self._load_state_dicts( model_ckpt_path, sharded_dirs, tp_size, pp_size ) merged_state_dict = self._merge_state_dicts( model_state_dict_lst, tp_size, pp_size ) del model_state_dict_lst if self.config.operation == "test": if not self.config.test_hf_dir: raise ValueError("test_hf_dir must be provided for test operation") self._test_state_dict(merged_state_dict) elif self.config.operation == "merge": self.save_hf_model_and_tokenizer(merged_state_dict) if self.config.hf_upload: self.upload_to_huggingface() else: raise ValueError(f"Unknown operation: {self.config.operation}")
def _test_state_dict(self, state_dict: dict[str, torch.Tensor]): """Compares the merged Megatron state_dict against a reference safetensors model. Applies necessary name mappings from Megatron to Hugging Face conventions using _replace_name. """ ref_state_dict = load_file(Path(self.config.test_hf_dir) / "model.safetensors") params_mapping = [ # (megatron core gpt model name, vllm model name) ("self_attention.linear_qkv.layer_norm_weight", "input_layernorm.weight"), ("self_attention.linear_qkv.layer_norm_bias", "input_layernorm.bias"), ("embedding.word_embeddings", "model.embed_tokens"), ("self_attention.linear_qkv", "self_attn.qkv_proj"), ("self_attention.linear_proj", "self_attn.o_proj"), ("pre_mlp_layernorm", "post_attention_layernorm"), ("mlp.linear_fc1.layer_norm_weight", "post_attention_layernorm.weight"), ("mlp.linear_fc1.layer_norm_bias", "post_attention_layernorm.bias"), ("mlp.linear_fc1", "mlp.gate_up_proj"), ("mlp.linear_fc2", "mlp.down_proj"), ("decoder.final_layernorm", "model.norm"), ("output_layer", "lm_head"), ("self_attention.linear_q", "self_attn.q_proj"), ("self_attention.linear_k", "self_attn.k_proj"), ("self_attention.linear_v", "self_attn.v_proj"), ] for original_name, loaded_weight in state_dict.items(): name = self._replace_name(original_name, params_mapping) if not name or name.endswith(".bias") and name not in ref_state_dict: continue if "rotary_emb.inv_freq" in name: continue if self.config.tie_word_embedding and "lm_head.weight" in name: continue if name not in ref_state_dict: raise RuntimeError(f"key: {name} not exist in state_dict") param = ref_state_dict[name] assert loaded_weight.dtype == param.dtype torch.testing.assert_close(loaded_weight, param, atol=1e-2, rtol=5e-2) def _replace_name( self, megatron_name: str, name_mapping: list[tuple[str, str]] ) -> str: for m_name, v_name in name_mapping: if m_name not in megatron_name: continue if "layers" in megatron_name: # deal with decoder layers megatron_name = megatron_name.replace("decoder", "model") megatron_name_list = megatron_name.split(".") if ( "layer_norm_weight" in megatron_name_list or "layer_norm_bias" in megatron_name_list ): param_name_list = megatron_name_list[:3] param_name_list.append(v_name) param_name = ".".join(param_name_list) else: param_name_list = megatron_name_list[:3] weight_or_bias = megatron_name_list[-1] param_name_list.append(v_name) param_name_list.append(weight_or_bias) param_name = ".".join(param_name_list) return param_name else: param_name = megatron_name.replace(m_name, v_name) return param_name return None # Return None if no mapping found
[docs] def main(): parser = argparse.ArgumentParser(description="verl model merger") subparsers = parser.add_subparsers( dest="operation", required=True, help="Specify 'merge' or 'test' operation." ) base_op_parser = argparse.ArgumentParser(add_help=False) base_op_parser.add_argument( "--backend", type=str, required=True, choices=["fsdp", "megatron"], help="The backend of the model", ) base_op_parser.add_argument( "--local_dir", type=str, required=True, help="Path to the saved model checkpoints", ) base_op_parser.add_argument( "--hf_model_path", type=str, default=None, help="(Deprecated) Path to the original Hugging Face model for config.", ) base_op_parser.add_argument( "--tie-word-embedding", action="store_true", help="Whether to tie word embedding weights (currently only Megatron supported)", ) base_op_parser.add_argument( "--is-value-model", action="store_true", help="Whether the model is a value model (currently only Megatron supported)", ) merge_parser = subparsers.add_parser( "merge", parents=[base_op_parser], help="Merge model checkpoints and save." ) merge_parser.add_argument( "--target_dir", default="tmp", type=str, help="Directory to save the merged huggingface model", ) merge_parser.add_argument( "--hf_upload_path", default=None, type=str, help="Hugging Face repository ID to upload the model", ) merge_parser.add_argument( "--private", action="store_true", help="Whether to upload the model to a private Hugging Face repository", ) test_parser = subparsers.add_parser( "test", parents=[base_op_parser], help="Test merged model against a reference Hugging Face model", ) test_parser.add_argument( "--test_hf_dir", type=str, required=True, help="Path to the reference Hugging Face model directory for testing", ) args = parser.parse_args() common_config_args = { "operation": args.operation, "backend": args.backend, "tie_word_embedding": args.tie_word_embedding, "is_value_model": args.is_value_model, "local_dir": args.local_dir, "hf_model_path": args.hf_model_path, "hf_model_config_path": args.local_dir, } if args.operation == "merge": config = ModelMergerConfig( **common_config_args, target_dir=args.target_dir, hf_upload_path=args.hf_upload_path, private=args.private, test_hf_dir=None, ) os.makedirs(config.target_dir, exist_ok=True) elif args.operation == "test": config = ModelMergerConfig( **common_config_args, test_hf_dir=args.test_hf_dir, # the following args are not used by test operation target_dir=None, hf_upload_path=None, private=False, ) else: raise NotImplementedError(f"Unknown operation: {args.operation}") if config.backend == "fsdp": merger = FSDPModelMerger(config) elif config.backend == "megatron": merger = MegatronModelMerger(config) else: raise NotImplementedError(f"Unknown backend: {config.backend}") merger.merge_and_save()
if __name__ == "__main__": main()