# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
from typing import Any
import numpy as np
import torch
from oumi.utils.logging import logger
JSON_FILE_INDENT = 2
[docs]
class TorchJsonEncoder(json.JSONEncoder):
# Override default() method
[docs]
def default(self, obj):
"""Extending python's JSON Encoder to serialize torch dtype."""
if obj is None:
return ""
# JSON does NOT natively support any torch types.
elif isinstance(obj, torch.dtype):
return str(obj)
# JSON does NOT natively support numpy types.
elif isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
try:
return super().default(obj)
except Exception:
logger.warning(f"Non-serializable value `{obj}` of type `{type(obj)}`.")
return str(obj)
[docs]
def convert_all_keys_to_serializable_types(dictionary: dict) -> None:
"""Converts all keys in a hierarchical dictionary to serializable types."""
serializable_key_types = {str, int, float, bool, None}
non_serializable_keys = [
key for key in dictionary if type(key) not in serializable_key_types
]
for key in non_serializable_keys:
dictionary[str(key)] = dictionary.pop(key)
# Recursively convert all keys for nested dictionaries.
for value in dictionary.values():
if isinstance(value, dict):
convert_all_keys_to_serializable_types(value)
[docs]
def flatten_config(
config: Any, prefix: str = "", separator: str = "."
) -> dict[str, Any]:
"""Flattens a nested config object into a flat dictionary with dot notation keys.
Args:
config: The config object to flatten (dataclass, dict, or other)
prefix: The prefix to prepend to keys
separator: The separator to use between nested keys
Examples:
>>> config = TrainingConfig(
>>> model=ModelParams(
>>> model_name="gpt2",
>>> ),
>>> training=TrainingParams(
>>> batch_size=16,
>>> ),
>>> )
>>> flatten_config(config)
{
"model.model_name": "gpt2",
"training.batch_size": 16,
}
Returns:
A flattened dictionary with string keys
"""
if dataclasses.is_dataclass(config) and not isinstance(config, type):
config_dict = dataclasses.asdict(config)
elif isinstance(config, dict):
config_dict = config
else:
# For non-dict/dataclass objects, convert to string representation
return {prefix or "value": str(config)}
flattened = {}
for key, value in config_dict.items():
new_key = f"{prefix}{separator}{key}" if prefix else key
if isinstance(value, dict):
# Recursively flatten nested dictionaries
nested_flat = flatten_config(value, new_key, separator)
flattened.update(nested_flat)
elif dataclasses.is_dataclass(value) and not isinstance(value, type):
# Recursively flatten nested dataclasses
nested_flat = flatten_config(value, new_key, separator)
flattened.update(nested_flat)
elif isinstance(value, (list, tuple)):
# Handle lists/tuples by converting to string or flattening if they
# contain dicts
if value and (
isinstance(value[0], dict)
or (
dataclasses.is_dataclass(value[0])
and not isinstance(value[0], type)
)
):
for i, item in enumerate(value):
item_key = f"{new_key}{separator}{i}"
nested_flat = flatten_config(item, item_key, separator)
flattened.update(nested_flat)
else:
flattened[new_key] = str(value)
else:
if isinstance(value, (str, int, float, bool)) or value is None:
flattened[new_key] = value
else:
flattened[new_key] = str(value)
return flattened
[docs]
def json_serializer(obj: Any) -> str:
"""Serializes a Python obj to a JSON formatted string."""
if dataclasses.is_dataclass(obj) and not isinstance(obj, type):
dict_to_serialize = dataclasses.asdict(obj)
elif isinstance(obj, dict):
dict_to_serialize = obj
else:
raise ValueError(f"Cannot serialize object of type {type(obj)} to JSON.")
# Ensure all (nested) dictionary keys are serializable.
if isinstance(dict_to_serialize, dict):
convert_all_keys_to_serializable_types(dict_to_serialize)
# Attempt to serialize the dictionary to JSON.
try:
return json.dumps(
dict_to_serialize, cls=TorchJsonEncoder, indent=JSON_FILE_INDENT
)
except Exception as e:
error_str = "Non-serializable dict:\n"
for key, value in dict_to_serialize.items():
error_str += f" - {key}: {value} (type: {type(value)})\n"
logger.error(error_str)
raise Exception(f"Failed to serialize dict to JSON: {e}")