Source code for oumi.datasets.vision_language.geometry3k

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing_extensions import override

from oumi.core.datasets import VisionLanguageSftDataset
from oumi.core.registry import register_dataset
from oumi.core.types.conversation import (
    ContentItem,
    Conversation,
    Message,
    Role,
    Type,
)

_GEOMETRY3K_INSTRUCTION = (
    r"You FIRST think about the reasoning process as an internal monologue and then "
    r"provide the final answer. "
    r"The reasoning process MUST BE enclosed within <think> </think> tags. "
    r"The final answer MUST BE put in \boxed{}."
)


[docs] @register_dataset("hiyouga/geometry3k") class Geometry3kDataset(VisionLanguageSftDataset): """Dataset class for the `hiyouga/geometry3k` dataset.""" default_dataset = "hiyouga/geometry3k" def __init__( self, *, add_system_instruction: bool = False, **kwargs, ) -> None: """Initializes a new instance of the Geometry3kDataset class.""" self._add_system_instruction = add_system_instruction super().__init__(**kwargs) def _process_text_value(self, s: str) -> str: # The data contains occasional `\n` at the beginning or end # of text values. Let's strip them. return s.strip() if s else ""
[docs] @override def transform_conversation(self, example: dict) -> Conversation: """Transform a single conversation example into a Conversation object.""" input_text = self._process_text_value(example["problem"]) input_text = input_text.removeprefix("<image>") if not self._add_system_instruction: input_text = input_text + " " + _GEOMETRY3K_INSTRUCTION output_text = self._process_text_value(example["answer"]) image = example["images"] if len(image) != 1: raise ValueError( f"Expected 1 image, but got {len(image)} images in example." ) image = image[0] messages = ( [ Message( role=Role.SYSTEM, content=_GEOMETRY3K_INSTRUCTION, ) ] if self._add_system_instruction else [] ) + [ Message( role=Role.USER, content=[ ContentItem( type=Type.IMAGE_BINARY, binary=image["bytes"], ), ContentItem(type=Type.TEXT, content=input_text), ], ), Message(role=Role.ASSISTANT, content=output_text), ] return Conversation(messages=messages)