Source code for oumi.core.analyze.length_analyzer

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Length analyzer for text content."""

import re
from typing import Any, Optional, Union

from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast

from oumi.core.analyze.sample_analyzer import SampleAnalyzer
from oumi.core.registry.registry import register_sample_analyzer


[docs] @register_sample_analyzer("length") class LengthAnalyzer(SampleAnalyzer): """Analyzer that computes various length metrics for text content.""" def __init__( self, *, char_count: bool = True, word_count: bool = True, sentence_count: bool = True, token_count: bool = False, tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None, include_special_tokens: bool = True, ): """Initialize the length analyzer. Args: char_count: Whether to compute character count word_count: Whether to compute word count sentence_count: Whether to compute sentence count token_count: Whether to compute token count tokenizer: Tokenizer to use for token counting (required if token_count=True) include_special_tokens: Whether to include special tokens in token count. Defaults to True to match training tokenization. Set to False for raw content analysis only. """ self.char_count = char_count self.word_count = word_count self.sentence_count = sentence_count self.token_count = token_count self.tokenizer = tokenizer self.include_special_tokens = include_special_tokens # Validate tokenizer requirements if self.token_count and tokenizer is None: raise ValueError( "tokenizer must be provided when token_count=True. " "Set token_count=False or provide a tokenizer." )
[docs] def analyze_message( self, text_content: str, tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None, ) -> dict[str, Any]: """Analyze text content and return length metrics. Args: text_content: The text content to analyze tokenizer: Optional tokenizer to use for token counting Returns: Dictionary containing requested length metrics """ metrics = {} if self.char_count: metrics["char_count"] = len(text_content) if self.word_count: # Simple word count - split on whitespace metrics["word_count"] = len(text_content.split()) if self.sentence_count: # Simple sentence count - split on common sentence endings sentences = re.split(r"[.!?]+", text_content) # Filter out empty strings sentences = [s.strip() for s in sentences if s.strip()] metrics["sentence_count"] = len(sentences) if self.token_count: # Use provided tokenizer or fall back to instance tokenizer tokenizer_to_use = tokenizer or self.tokenizer if tokenizer_to_use is not None: # Use tokenizer for accurate token count tokens = tokenizer_to_use.encode( text_content, add_special_tokens=self.include_special_tokens ) metrics["token_count"] = len(tokens) return metrics