Source code for oumi.core.analyze.length_analyzer
# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Length analyzer for text content."""
import re
from typing import Any, Optional, Union
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from oumi.core.analyze.sample_analyzer import SampleAnalyzer
from oumi.core.registry.registry import register_sample_analyzer
[docs]
@register_sample_analyzer("length")
class LengthAnalyzer(SampleAnalyzer):
"""Analyzer that computes various length metrics for text content."""
def __init__(
self,
*,
char_count: bool = True,
word_count: bool = True,
sentence_count: bool = True,
token_count: bool = False,
tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None,
include_special_tokens: bool = True,
):
"""Initialize the length analyzer.
Args:
char_count: Whether to compute character count
word_count: Whether to compute word count
sentence_count: Whether to compute sentence count
token_count: Whether to compute token count
tokenizer: Tokenizer to use for token counting
(required if token_count=True)
include_special_tokens: Whether to include special tokens in token count.
Defaults to True to match training tokenization. Set to False for raw
content analysis only.
"""
self.char_count = char_count
self.word_count = word_count
self.sentence_count = sentence_count
self.token_count = token_count
self.tokenizer = tokenizer
self.include_special_tokens = include_special_tokens
# Validate tokenizer requirements
if self.token_count and tokenizer is None:
raise ValueError(
"tokenizer must be provided when token_count=True. "
"Set token_count=False or provide a tokenizer."
)
[docs]
def analyze_message(
self,
text_content: str,
tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None,
) -> dict[str, Any]:
"""Analyze text content and return length metrics.
Args:
text_content: The text content to analyze
tokenizer: Optional tokenizer to use for token counting
Returns:
Dictionary containing requested length metrics
"""
metrics = {}
if self.char_count:
metrics["char_count"] = len(text_content)
if self.word_count:
# Simple word count - split on whitespace
metrics["word_count"] = len(text_content.split())
if self.sentence_count:
# Simple sentence count - split on common sentence endings
sentences = re.split(r"[.!?]+", text_content)
# Filter out empty strings
sentences = [s.strip() for s in sentences if s.strip()]
metrics["sentence_count"] = len(sentences)
if self.token_count:
# Use provided tokenizer or fall back to instance tokenizer
tokenizer_to_use = tokenizer or self.tokenizer
if tokenizer_to_use is not None:
# Use tokenizer for accurate token count
tokens = tokenizer_to_use.encode(
text_content, add_special_tokens=self.include_special_tokens
)
metrics["token_count"] = len(tokens)
return metrics